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LETTER TO THE EDITOR 

Continuum model of water and percolation theory 

Yurii I Naberukhin 
Institute of Chemical Kinetics and Combustion, Siberian Branch of the Academy of Science, 
Novosibirsk 630090, USSR 

Received 2 April 1986 

Abstract. We discuss how one can combine a bichromatic formulation of the percolation 
problem with the 'pure' continuum model of water without broken H bonds. We also 
propose a method for comparing the computer energy distribution with spectroscopic 
contours and demonstrate them to be inconsistent. 

When applied to the problem of water structure (Stanley 1979, Stanley and Teixeira 
1980, Geiger et a1 1979, Naberukhin 1984) percolation theory struck the so-called 
mixture models of water an unexpectedly strong blow. Indeed, they propose, on the 
one hand, the existence of small isolated associates and, on the other hand, quite a 
large fraction of intact hydrogen bonds, xH, which, as a rule, exceeds 40% (Geiger et 
al 1979). Such a situation is impossible geometrically according to percolation theory, 
since xH turns out to be above the percolation threshold xh = 0.33-0.39 for the four- 
coordinated networks. Hence, a single continuous network of hydrogen bonds filling 
all space must be considered as the main image of the water structure. Thus, percolation 
theory supports rather the continuum models of water (Stanley and Teixeira 1980, 
Naberukhin 1984). However, the relations between both concepts have some interesting 
points which have not been discussed in the literature and to which we should like to 
call attention. 

Concrete calculations of water properties in terms of percolation theory (numbers 
and properties of clusters of different sizes, critical exponents, etc) are performed on 
the basis of structural information obtained by computer simulation methods 
(molecular dynamics or Monte Carlo). A characteristic feature of these methods in 
their present state is that they are based on the analytical models of the total interaction 
energies of molecules. Hydrogen bonding is not separated among other interaction 
types and requires an additional definition by means of artificial recipes. The energetic 
definition of the hydrogen bond is used most extensively. A given pair of water 
molecules are considered to be hydrogen bonded if their total interaction energy E is 
stronger than a certain chosen H-bonding threshold VH ( E  < V, < 0). For each thresh- 
old value VH one can find, in molecular configurations generated by a computer, an 
average number of hydrogen bonds per water molecule nH and a fraction of intact 
bonds xH=$nH (relative to their highest possible number n H = 4  when each water 
molecule is engaged in four H bonds). Changing VH one can vary the xN value from 
zero to one and verify the predictions of percolation theory throughout this range 
(Blumberg et al 1984, Geiger et al 1984). 

Though it is used in most water models and satisfies the needs of percolation theory, 
the separation of all the H bonds in water into intact and broken ones contradicts the 
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physics of the situation. H bonding, as well as any interaction, is a continuous function 
of parameters (distances, angles) and one cannot point out such an energy value, low 
as it may be, which could be ascribed to the H bond. Moreover, experimental data 
on the stretching vibration contour do not show any trace of broken H bonds in water 
under ordinary conditions (Gorbunov and Naberukhin 1975) which is the basis of the 
'pure' continuum models of water comprising no broken H bonds (Naberukhin 1984, 
Zhukovskii 1976, 1981, Efimov and Naberukhin 1978, 1980, 1981, 1982, Pople 1951, 
Rice and Sceats 1981). 

How can one combine a traditional (black-white) formulation of the percolation 
problem with the 'pure' continuum model? This can be done very simply if we treat 
the threshold VH as a conditional boundary between strong and weak H bonds rather 
than as the H-bond definition. In other words, we consider each water molecule to 
be involved in four hydrogen bonds exactly, with their energies fluctuating and dis- 
tributed at random among four bonds. The function nH(  VH) is interpreted in this case 
as the number of hydrogen bonds per molecule with the energy equal to, or smaller 
than, a given value VH. Dividing all the variety of H bonds into two species-strong 
( E  VH) and weak ( E  > VH) ones-we can formulate a conventional bichromatic 
problem of percolation through strong H bonds and then investigate its dependence 
on VH. Hence, the function nH( VH) is intended for energy classification of H bonds, 
but not for counting the number of intact H bonds (they are all intact). 

Such an interpretation of the function nH( VH) means that it is nothing else but a 
distribution function of a random variable-the H-bond energy-in the sense of 
probability theory: nH( VH) = P { E  VH} (see, for example, Feller 1968). This function 
is connected with another important characteristic-the probability frequency of the 
random variable or, more physically, the H-bond energy distribution p (  E)-by the 
relations 

J -m 

or 

This allows us to write the mean H-bond energy E = jym @ ( E )  d E  in the form 

Figure 1 shows the functions nH( VH) and p (  VH) obtained by molecular dynamics 
computations of water (Geiger et a1 1984) at two temperatures. A significant feature 
of the function nH(  VH), as follows from computer experiment, is its sharp increase up 
to nH values much greater than nH = 4 when VH + 0. This is a consequence of the fact 
that the interaction energy model does not distinguish the hydrogen bond from the 
van der Waals interaction. The latter prevails at small energy values, E b -4 kJ mol-', 
and corresponds to the interaction of a given particle with many distant molecules, 
which results in nH >.> 4. To distinguish H bonds, at least formally, Blumberg et a1 
(1984) declare the four strongest interactions to be these and here we extrapolate the 
n H (  V H )  curves SO that n H (  V H )  + 4 at VH -+ 0 (see figure 1 ) .  

Separation of the H-bond energy distribution p (  E )  from computer calculations is 
of importance since p ( E )  can be compared with the experimental distribution obtained 
from the band contours of water vibrational spectra. In spectroscopy, an empirical 

E = - q o  4 n H ( V H )  dVH. 
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Figure 1. Distribution function of the hydrogen bond energy, nH( VH), and corresponding 
probability frequency function,p( VH). p( V,) is calculated by equation ( 1 )  from the nH( VH) 
data of Geiger er a1 (1984). The broken curve shows the real behaviour of nH( VH) at small 
VH . 

correlation between the H-bond energy and the OH stretching vibration frequency has 
been established (Efimov and Naberukhin 1980): 

E = -b( W ,  - W )  (2) 
where W ,  =3707cm-' is the OH oscillator frequency in the vapour, b -  
51.5 J (mol cm-')-'. Therefore the stretching band contour I (w)  will duplicate the 
H-bond energy distribution p ( E ) .  This holds only for the isotropic Raman scattering 
contour where the transition intensity does not depend on the H-bond strength, and 
for the HOD molecules dissolved in D 2 0  to prevent inter- and intramolecular coupling 
of the OH oscillators. It is very important that a simple law exists describing the 
temperature transformation of the contour. According to Zhukovskii (1976, 1981) the 
function p (  E) is given by Boltzmann's distribution: 

p ( E )  = (?-I( T) W ( E )  exp(-E/kT) (3) 
where W ( E )  is the statistical weight of the state with an energy E and Q( T) = 

W ( E )  exp(-E/kT) dE. This gives the relation between the distributions at some 
temperatures TI and T2: 

0 

By virtue of correlation (2) we obtain an analogous formula for the relation of 
spectral contours (the Zhukovskii formula): 
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Figure 2 shows that formula ( 5 )  is an excellent fit to the spectral experiments. Such 
a comparison has been made in more detail by Zhukovskii (1976, 1981) and Efimov 
and Naberukhin (1980, 1981,1982). Quite a different situation occurs for the computer 
distribution p ( E ) .  We see (in figure 3) that Boltzmann's distribution (3) does not hold 
here. Moreover, the computer simulated p (  E)  transformed into the vibrational spec- 
trum contour, by means of equation (2), is far from the experimental contour (figure 
4). All this demonstrates the imperfection of modern water computer simulation 
methods. It is probably not sufficient to improve the existing water-water interaction 
models of the s n  type to achieve agreement with spectral experiment. It may be 
necessary to construct a model for the hydrogen bonding alone, rather than for the 
total interaction, since the vibrational contour reflects the perturbation of the OH 
oscillator by the H bond only. 

So in the present letter we should like to emphasise two points. Firstly, percolation 
theory is an adequate method for investigating the continuum model of water. The 
interpretation given here removes the nuance of approximation or artificiality from 
the concept of a cutoff parameter V,, which is regarded as imposing a discrete symmetry 
on a continuous function, the interparticle potential (see Stanley and Teixeira 1980). 
We attach a formal, rather than a physical, meaning to the threshold V, which allows 
one to strictly formulate a bichromatic and, if desired, polychromatic percolation 
problem in the pure continuum system. 

Secondly, we emphasise that spectroscopic data on the stretching contours are 
helpful for testing the computer calculations of the water H-bond distributions, which 
have not yet been used. Comparison with spectroscopic experiment can favour the 
improvement of interaction potential models for water. 

Figure 2. Temperature transformation of the stretching vibration contour of the OH oscil- 
lator of HOD molecules in isotropic Raman scattering. Full curves are experimental data 
according to Scherer er al (1974). The broken curve is the calculation by the Zhukovskii 
formula (5)  from T, = 10 "C to T2 = 90 "C. 
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Figure 3. Temperature transformation of the H-bond energy distribution. Full curves: 
computer experiment according to Geiger et a/ (1984) (see figure 1). Broken curve: 
calculation by formula (4) from T, = -38 "C to T, = 14 "C. 

Figure4. Comparison of the OH stretching vibration contours of HOD molecules from 
the experiment of Scherer er a1 (1974) (10 "C, full curve) and the computer distribution 
p ( E )  transformed into I ( w )  by means of equation (2) (9T, broken curve). 
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I am very grateful to Professor A Geiger for sending tabulated data on the function 
nH( V,) before publication. 
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